
  

 
Abstract — In order  to create adaptive Agent Systems with 

abilities matching those of their  biological counterpar ts, a natural 
approach is to incorporate classical conditioning mechanisms into 
such systems. However, existing models for  classical conditioning 
are usually based on differential equations. Since the design of 
Agent Systems is traditionally based on qualitative conceptual 
languages, these differential equations are often not directly 
appropr iate to serve as an input for  Agent System design. To deal 
with this problem, this paper introduces a formal approach to 
descr ibe and analyse the dynamics of a conditioning process at a 
neural level. The approach is based on logical specification and 
analysis of dynamic proper ties of conditioning. The approach is 
illustrated for  the case of Aplysia. 
 

I. INTRODUCTION 

Intelligent Agents often operate in dynamic and uncertain 
environments. Therefore, an important challenge for Agent-
Oriented Software Engineering (AOSE) is to incorporate 
learning mechanisms into Agent Systems. A basic learning 
mechanism that can be found in many organisms is classical 
conditioning [9]. Thus, in order to create Intelligent Agents 
Systems with abilities matching those of their biological 
counterparts, a natural approach is to build classical 
conditioning into such systems, e.g., [1]. 

However, in the literature classical conditioning is usually 
described and analysed informally. If formalisation is used, 
this is often based on mathematical models using differential 
equations, e.g., Dynamical Systems Theory [10]. In contrast, 
Agent-Based Systems traditionally make use of logical, 
conceptual languages, such as Golog [11] or 3APL [3]. Most 
of these languages are good for expressing qualitative 
relations, but less suitable to work with complex differential 
equations. Therefore, using mathematical models as a direct 
input for the design of Agent Systems is not trivial. 

To bridge the gap between the quantitative nature of 
existing conditioning models and the conceptual, logical type 
of languages typically used to design Agent Systems, this 
paper introduces a logical approach for the analysis and 
formalisation of conditioning processes that combines 
qualitative and quantitative concepts, cf. [7]. Using this 
approach, the dynamics of conditioning can be analysed from 
two perspectives: the perspective of externally observable 
behaviour and the perspective of internal mechanisms to 

realise the behaviour. From the external perspective the 
dynamics of the observed behaviour can be analysed, i.e., how 
during a history of learning experiences the behaviour is 
changing. From an internal perspective the dynamics of the 
actual underlying neural mechanisms that play a role can be 
investigated and the behaviour they generate determined. One 
of the contributions of this paper is to relate the dynamics of 
models for these (internal) neural mechanisms to the dynamics 
of the externally observable behaviour. 

As an alternative to neural models, other kinds of models of 
internal mechanisms can be designed and analysed. Such 
internal models have been developed within different areas, 
varying from symbolic to connectionist and dynamical systems 
models. According to [5], behaviour can be described from 
three different perspectives: 

 

1) biochemical 
2) physiological/neural 
3) behavioural 

 

In general, models that belong to category 1) tend to get 
extremely complex and therefore not easy to handle. Instead, 
models that belong to category 3) can be manageable, but 
these models are usually not executable, and therefore not 
suited for simulation. To solve both problems, this paper 
introduces a high-level modelling approach in which a neural 
description of conditioning still yields a manageable model. If 
the actual underlying neural mechanisms are taken as a point 
of departure to analyse conditioning, the sea hare Aplysia is an 
appropriate species to study, since its neural mechanisms have 
been well-investigated; cf. [4]. In this paper it will be shown 
how our modelling approach can be used to simulate Aplysia’s 
neural mechanisms underlying conditioning. The results of 
such a simulation can be used to create requirements in AOSE. 

An overview of the paper is as follows. In Section 2 the 
high-level modelling approach is briefly introduced. Section 3 
introduces the case study and the state properties for this case 
study. In Section 4 the (executable) local dynamic properties 
describing basic mechanisms for the case study are presented; 
simulations on the basis of these local dynamic properties are 
discussed in Section 5. In Section 6 the interlevel relations 
between dynamic properties of the externally observable 
behaviour and the local properties describing the internal 
mechanisms are discussed. Section 7 concludes the paper with 
a discussion.   
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II. MODELLING APPROACH 

To formally specify dynamic properties that express criteria 
for representational content from a temporal perspective an 
expressive language is needed. Dynamics will be described in 
the next section as evolution of states over time. The notion of 
state as used here is characterised on the basis of an ontology 
defining a set of state properties that do or do not hold at a 
certain point in time. Dynamic properties can be formulated 
that relate a state at one point in time to one or more states at 
other points in time. A simple example is the following 
dynamic property specification:  

 

at any point in time t1 if the agent observes rain at t1, then there exists a point 
in time t2 after t1 such that at t2 the agent has internal state property s 

 

Here, for example, s can be viewed as a sensory 
representation of the rain. To express such dynamic properties, 
and other, more sophisticated ones, the temporal trace 
language TTL is used, cf. [7]. Within this language, explicit 
references can be made to time points and traces. Here trace 
or trajectory over an ontology Ont is a time-indexed sequence 
of states over Ont. The sorted predicate logic temporal trace 
language TTL is built on atoms referring to, e.g., traces, time 
and state properties. For example, ‘ in the internal state of agent 
A in trace γ at time t property s holds’  is formalised by state(γ, 

t, internal(A)) |== s. Here |== is a predicate symbol in the language, 
usually used in infix notation, which is comparable to the Holds-
predicate in situation calculus. Dynamic properties are 
expressed by temporal statements built using the usual logical 
connectives and quantification (for example, over traces, time 
and state properties).  

To be able to perform some (pseudo-)experiments, a simpler 
temporal language has been used to specify simulation models 
in a declarative manner. This language (the leads to language) 
enables to model direct temporal dependencies between two 
state properties in successive states. This executable format is 
defined as follows. Let α and β be state properties of the form 
‘conjunction of atoms or negations of atoms’ , and e, f, g, h non-
negative real numbers. Then the notation α →→e, f, g, h β, means: 

 

If        state property α holds for a certain time interval with duration g 
then   after some delay (between e and f) state property β will hold 

for a certain time interval of length h. 
 

For a precise definition of the leads to format in terms of the 
language TTL, see [7]. A specification of dynamic properties in 
leads to format has as advantages that it is executable and that 
it can often easily be depicted graphically. The leads to format 
has shown its value especially when temporal or causal 
relations in the (continuous) physical world are modelled and 
simulated in an abstract, non-discrete manner; for example, the 
intracellular chemistry of E. coli [6]. 

 

III. THE APLYSIA CASE STUDY 

In this section the Aplysia case study will be described, both 
from an external and an internal perspective. In addition, the 
state properties used to model the example are presented. 

A. External Perspective 

Aplysia is a sea hare that is often used to do experiments. It 
is able to learn; for example, it performs classical conditioning 
in the following manner. This (a bit simplified) description is 
mainly based on [4], pp. 155-156. First the (learning) 
behaviour viewed from an external perspective is addressed. 
Initially, before learning, the following behaviour is shown: 

• a tail shock leads to a response (contraction) 
• a light touch on its siphon is insufficient to trigger 

such a response  
Now suppose the following experimental protocol is 
undertaken. In each trial the subject is touched lightly on its 
siphon and then, shocked on its tail (as a consequence it 
responds). It turns out that after a number of trials (three in the 
current example) the behaviour has changed. Thus, after 
learning, Aplysia shows the following behaviour:  

• the animal also responds (contracts) on a siphon 
touch. 

Note that, to characterise behaviour, there is a difference 
between the learned behaviour (which is simply an adapted 
stimulus-response behaviour) and the learning behaviour, 
which is a form of adaptive behaviour, no stimulus-response 
behaviour. To specify such behaviours the following sensor 
and effector states are used: tail_shock, siphon_touch, contraction. 
In terms of these state properties the following global dynamic 
properties can be specified in leads to format: 

 

GP1 tail_shock  →→e,f,g,h  contraction  (always) 
GP2 siphon_touch  →→e,f,g,h  contraction  (after learning) 

 

However the learning behaviour itself is not expressible in 
leads to format, but it is in TTL format: 

 

GP3 at any point in time t, 
if  a siphon touch occurs 
  and at three different earlier time points t1, t2, t3, 

a siphon touch occurred, directly followed by a tail shock 
then it will contract 

 

Formally: 
∀γ ∀t state(γ, t) |== siphon_touch  & 
∃t1, t2, t3, u1, u2, u3   t1 < u1 < t2 < u2 < t3 < u3 < t &  
state(γ, t1) |== siphon_touch  & state(γ, u1) |== tail_shock  & 
state(γ, t2) |== siphon_touch  & state(γ, u2) |== tail_shock  & 
state(γ, t3) |== siphon_touch  & state(γ, u3) |== tail_shock   
�  ∃t' ≥ t  state(γ, t') |== contraction   

 

As can be seen, the temporal complexity of the learning 
behaviour specification is much higher than that of the learned 
behaviour. 

B. Internal Perspective 

Roughly spoken the internal neural mechanism for Aplysia’s 
conditioning can be depicted as in Figure 1; adjusted from [4]. 

 
 
 
 
 
 
 

Fig. 1. Neural mechanisms 
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A tail shock activates a sensory neuron SN1. Activation of 
this neuron SN1 activates the motoneuron MN; activation of 
MN makes the sea hare move. A siphon touch activates the 
sensory neuron SN2. Activation of this sensory neuron SN2 
normally does not have sufficient impact on MN to activate 
MN. After learning, activation of SN2 has sufficient impact to 
activate MN. In addition, activation of SN1 also leads to 
activation of the intermediary neuron IN. If both SN2 and IN 
are activated simultaneously, this changes the synapse between 
SN2 and MN: it makes that in this synapse more 
neurotransmitter is produced if SN2 is activated. After a 
number of times this leads to the situation that also activation 
of SN2 yields activation of MN. 

To model the example the following internal state properties 
are used: 

 

SN1   sensory neuron 1 is activated 
SN2   sensory neuron 2 is activated 
IN    intermediary neuron IN is activated 
MN  motoneuron MN is activated 
S(r)  the synapse between SN2 and MN is able to produce 

an amount r of neurotransmitter 
 

The dynamics of these internal state properties involve 
temporal leads to relationships, which are analysed in more 
detail in the next section. 

 

IV. LOCAL DYNAMIC PROPERTIES 

To model the dynamics of the example, the following local 
properties (in leads to format) are considered. They describe 
the basic parts of the process.  

 

LP1   tail_shock  →→e,f,g,h  SN1  
LP2  siphon_touch→→e,f,g,h  SN2  
LP3   SN1 →→e,f,g,h IN ∧ MN  
LP4  S(r) ∧ SN2 ∧ IN ∧ r < 4 →→e,f,g,h  S(r+1)  
LP5   S(4) ∧ SN2 →→e,f,g,h  MN  
LP6   MN →→e,f,g,h contraction 
LP7 S(r) ∧ not S(r+1) ∧ r < 4 →→e,f,g,h S(r) 
LP8 S(4)  →→e,f,g,h  S(4) 
LP9 start →→e,f,g,h S(1) 
 

In Figure 2 an overview of these properties is given in a 
graphical form. Here, the circles denote state properties and 
the arrows denote dynamic properties. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Overview of the basic dynamics of the simulation model 

 
Note that this model is based on a number of 

simplifications. For example, it is assumed that after exactly 4 
steps the strength of the synapse between SN2 and MN is 

maximal, and that there is no extinction. However, since our 
modelling approach supports the use of quantitative concepts 
(such as real numbers and mathematical operations), it is easy 
to incorporate such features in the model. A rather 
straightforward way to do this would be to replace LP4 
through LP8 by the following local properties: 

 

LP4  S(r) ∧ SN2 ∧ IN →→e,f,g,h  S(β*(K-r)+(r*ε))  
LP5   S(r) ∧ SN2 ∧ r > t →→e,f,g,h  MN  
LP7 S(r) ∧ not SN2 →→e,f,g,h S(r*ε) 
LP8 S(r) ∧ not IN →→e,f,g,h S(r*ε) 
 

Here, β indicates the learning rate, K indicates the maximal 
strength of the synapse between SN2 and MN (e.g., 4), ε 
indicates the extinction rate, and t indicates the minimum 
threshold of S needed to have SN2 influence MN. For all 
values, real numbers can be used. 

 

V. SIMULATION 

A special software environment has been created to enable 
the simulation of executable models. Based on an input 
consisting of dynamic properties in leads to format, the 
software environment generates simulation traces.  An 
example of such a trace can be seen in Figure 3. Here, time is 
on the horizontal axis, the state properties are on the vertical 
axis. A dark box on top of the line indicates that the property is 
true during that time period, and a lighter box indicates that the 
property is false. This trace is based on all local properties 
identified above. In property LP1 and LP2 the values (0,0,1,3) 
have been chosen for the timing parameters e, f, g, and h. In all 
other properties, the values (0,0,1,1) have been chosen.  

 
 
Fig. 3. Example simulation trace 
 

As can be seen in Figure 3, at the beginning of the trace the 
organism has not performed any conditioning. The initial 
siphon touch it receives does lead to the activation of sensory 
neuron SN2, but the synapse between SN2 and motoneuron MN 
does not produce much neurotransmitter yet (indicated by 
internal state property S(1)). Thus, the activation of SN2 does 
not yield an activation of MN, and consequently no external 
action follows. In contrast, it is shown that a shock of the 
organism's tail does initially lead to the external action of 
contraction. This can be seen in Figure 3 between time point 
10 (when the tail shock occurs) and time point 13 (when the 
animal contracts). After that, the actual learning phase starts. 
This phase consists of a sequence of three trials where a siphon 
touch is immediately followed by a tail shock. As a result, the 
sensory neuron SN2 is activated at the same time as the 



  

intermediary neuron IN, which causes the synapse to change so 
that it can produce an increased amount of neurotransmitter 
each time SN2 is activated. Such a change in the synapse is 
indicated by a transition from one internal state property to 
another (first from S(1) to S(2), then to S(3), and finally to S(4)). 
As soon as internal state property S(4) holds (see time point 
44), the conditioning process has been performed successfully. 
From that moment, Aplysia's behaviour has changed: it also 
contracts on a siphon touch. 

As a side remark, notice that the amount of trials (three) is 
kept low to keep the example simple. However, similar 
experiments have been performed with a case of 1000 learning 
steps. Since the abstract way of modelling used for the 
simulation is not computationally expensive, also these 
simulations took no more than 90 seconds. In addition, our 
simulation approach has possibilities to incorporate real 
numbers in state properties, and to perform complex 
mathematical operations with these numbers. This makes it 
more expressive than more traditional forms of temporal logic. 

 

VI. INTERLEVEL RELATIONS 

As mentioned in the Introduction, an important challenge is 
to verify whether the internal (neural) mechanisms of adaptive 
agents (such as Aplysia) entail the expected behaviour from an 
external perspective. Or, in terms of the present case study, can 
it be proven that the local dynamic properties specified in 
Section 4 together imply the global dynamic property GP3 
(expressing the learning behaviour, see Section 3A)? 

Verification of such interlevel relations can be performed in 
two manners: 1) by automated checks and 2) by mathematical 
proof. To achieve the former, additional software has been 
developed that takes traces and formally specified properties 
as input and checks whether a property holds for a trace (see 
[7]). Using automatic checks of this kind, all properties 
presented in this paper have been checked against traces such 
as depicted in Figure 3. In particular, dynamic property GP3 
has been checked successfully. Usually, the duration of such 
checks does not take more then a second. However, note that 
these checks are only an empirical validation, they are no 
exhaustive proof as, e.g., model checking is. Currently, the 
possibilities are explored to combine TTL with existing model 
checking techniques. 

To verify the relations between local and global dynamic 
properties exhaustively, mathematical relations can be (and 
have been) specified by hand between properties at different 
levels. An example of such a relation is described by the 
following implication: 

 

LP1  through LP9 & CWA    �   GP3 
 

This relation states that the local properties together imply the 
global property GP3. Moreover, one additional property is 
introduced, i.e., the Closed World Assumption (CWA). For 
space limitations, the full proof of this relationship is left out. 
However, interested readers can find it at the following URL: 
http://www.cs.vu.nl/~tbosse/aplysia/. 

VII. DISCUSSION 

To bridge the gap between the quantitative nature of 
existing conditioning models and the conceptual, logical type 
of languages typically used to design Agent Systems, this 
paper introduces an analysis of the dynamics of classical 
conditioning from a logical perspective. It provides two types 
of temporal logical formalisations, one at the behavioural 
level, and one at the neurological level; cf. [5]. The neural 
processes of the Aplysia case study (cf. [4]) have been 
formalised by identifying executable local dynamic properties 
for the basic dynamics of Aplysia’s neural conditioning 
mechanism. On the basis of these local properties simulations 
have been made. Moreover, it is shown how the descriptions at 
different levels can be logically related to each other, which 
can be considered as a formalisation of the (inter-level) 
reduction relations between the two levels. The analysis results 
can be used to extend existing methodologies for AOSE by 
including learning mechanisms as observed in nature. 

Concerning related work, in [2] another formal model is 
described of the dynamics of conditioning processes, using a 
similar modelling approach. However, that paper focuses on 
human conditioning, based on existing literature such as [8]. 
Instead, the current paper focuses on the specific case of 
Aplysia, of which the neural mechanisms are much simpler and 
therefore better understood. As a consequence, the model 
presented in the current paper is at a neural level, whereas the 
model of [2] is at a functional level. Another difference is that 
their model concentrates more on the temporal aspects of the 
conditioning. 
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